Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.642
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38561516

RESUMO

BACKGROUND: Despite the potential radiotoxicity in differentiated thyroid cancer (DTC) patients with high-dose 131I therapy, the alterations and regulatory mechanisms dependent on intestinal microecology remain poorly understood. We aimed to identify the characteristics of the gut microbiota and metabolites in DTC patients suffering from high-dose 131I therapy and explore the radioprotective mechanisms underlying arachidonic acid (ARA) treatment. METHODS: A total of 102 patients with DTC were recruited, with fecal samples collected before and after 131I therapy for microbiome and untargeted and targeted metabolomic analyses. Mice were exposed to total body irradiation with ARA replenishment and antibiotic pretreatment and were subjected to metagenomic, metabolomic, and proteomic analyses. RESULTS: 131I therapy significantly changed the structure of gut microbiota and metabolite composition in patients with DTC. Lachnospiraceae were the most dominant bacteria after 131I treatment, and metabolites with decreased levels and pathways related to ARA and linoleic acid were observed. In an irradiation mouse model, ARA supplementation not only improved quality of life and recovered hematopoietic and gastrointestinal systems but also ameliorated oxidative stress and inflammation and preserved enteric microecology composition. Additionally, antibiotic intervention eliminated the radioprotective effects of ARA. Proteomic analysis and ursolic acid pretreatment showed that ARA therapy greatly influenced intestinal lipid metabolism in mice subjected to irradiation by upregulating the expression of hydroxy-3-methylglutaryl-coenzyme A synthase 1. CONCLUSION: These findings highlight that ARA, as a key metabolite, substantially contributes to radioprotection. Our study provides novel insights into the pivotal role that the microbiota-metabolite axis plays in radionuclide protection and offers effective biological targets for treating radiation-induced adverse effects.

2.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562798

RESUMO

Mass spectrometry-based phosphoproteomics offers a comprehensive view of protein phosphorylation, but limited knowledge about the regulation and function of most phosphosites restricts our ability to extract meaningful biological insights from phosphoproteomics data. To address this, we combine machine learning and phosphoproteomic data from 1,195 tumor specimens spanning 11 cancer types to construct CoPheeMap, a network mapping the co-regulation of 26,280 phosphosites. Integrating network features from CoPheeMap into a machine learning model, CoPheeKSA, we achieve superior performance in predicting kinase-substrate associations. CoPheeKSA reveals 24,015 associations between 9,399 phosphosites and 104 serine/threonine kinases, including many unannotated phosphosites and under-studied kinases. We validate the accuracy of these predictions using experimentally determined kinase-substrate specificities. By applying CoPheeMap and CoPheeKSA to phosphosites with high computationally predicted functional significance and cancer-associated phosphosites, we demonstrate the effectiveness of these tools in systematically illuminating phosphosites of interest, revealing dysregulated signaling processes in human cancer, and identifying under-studied kinases as putative therapeutic targets.

3.
Cell Metab ; 36(4): 725-744, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38569470

RESUMO

Postbiotics, which comprise inanimate microorganisms or their constituents, have recently gained significant attention for their potential health benefits. Extensive research on postbiotics has uncovered many beneficial effects on hosts, including antioxidant activity, immunomodulatory effects, gut microbiota modulation, and enhancement of epithelial barrier function. Although these features resemble those of probiotics, the stability and safety of postbiotics make them an appealing alternative. In this review, we provide a comprehensive summary of the latest research on postbiotics, emphasizing their positive impacts on both human and animal health. As our understanding of the influence of postbiotics on living organisms continues to grow, their application in clinical and nutritional settings, as well as animal husbandry, is expected to expand. Moreover, by substituting postbiotics for antibiotics, we can promote health and productivity while minimizing adverse effects. This alternative approach holds immense potential for improving health outcomes and revolutionizing the food and animal products industries.


Assuntos
Microbioma Gastrointestinal , Probióticos , Animais , Humanos , Promoção da Saúde , Estado Nutricional , Antibacterianos , Probióticos/farmacologia , Probióticos/uso terapêutico
4.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589686

RESUMO

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.

5.
Future Microbiol ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629898

RESUMO

Objective: This study investigates the application of metagenomic next-generation sequencing (mNGS) in the diagnosis of neurobrucellosis (NB). Methods: We retrospectively analyzed patients diagnosed with NB who underwent cerebrospinal fluid (CSF) mNGS testing in Xijing Hospital from 2015 to 2021. Results: Among the 20 individuals included in the study, the serum rose bengal test was positive in 11 out of 16 cases, serum agglutination test was positive in 13 out of 16 cases, CSF culture was positive in 6 out of 11 cases, and CSF mNGS tests were positive in 18 out of 20 cases. Conclusion: CSF mNGS demonstrates superior sensitivity; therefore, it is recommended to collect CSF for mNGS testing prior to antibiotic therapy when NB is suspected.


Neurobrucellosis (NB) is a disease of the nervous system caused by a type of bacteria called Brucella. It is rare, serious and manifests inconsistently, making it hard to diagnose. Metagenomic next-generation sequencing (mNGS) is a new way to detect disease-causing bacteria by looking at their genetic material. mNGS is fast, accurate and covers a wide range of disease-causing bacteria. We looked back at patients diagnosed with NB at Xijing Hospital between 2015 and 2021 and tested samples of the fluid surrounding the brain and the spinal cord, called cerebrospinal fluid (CSF), by mNGS. A total of 20 patients were included in the study. Compared with the traditional methods, mNGS of CSF samples showed advantages in diagnosing NB. However, antibiotics may affect the results.

6.
Inorg Chem ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625102

RESUMO

Two novel MoO42--templated luminescent silver alkynyl nanoclusters with 20-nuclearity ([(MoO42-)@Ag20(C≡CtBu)8(Ph2PO2)7(tfa)2]·(tfa-) (1)) and 18-nuclearity ([(MoO42-)@Ag18(C≡CtBu)8(Ph2PO2)7]·(OH) (2)) (tfa = trifluoroacetate) were synthesized with the green light maximum emissions at 507 and 516 nm, respectively. The nanoclusters were investigated and characterized by single-crystal X-ray crystallography, electrospray ionization mass spectrum (ESI-MS), X-ray photoelectron spectroscopy, thermogravimetry (TG), photoluminescence (PL), ultraviolet-visible (UV-vis) spectroscopy, and density functional theory calculations (DFT). The two nanoclusters differ in their structure by a supplementary [Ag2(tfa)2] organometallic surface motif, which significantly participates in the frontier molecular orbitals of 1, resulting in similar bonding patterns but different optical properties between the two clusters. Indeed, both nanoclusters show strong temperature-dependent photoluminescence properties, which make them potential candidates in the fields of optical devices for further applications.

7.
Exp Neurol ; 376: 114775, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38604438

RESUMO

OBJECTIVE: Sleep-related hypermotor epilepsy (SHE) is a focal epilepsy syndrome characterized by seizures that predominantly occur during sleep. The pathogenesis of these seizures remains unclear. We previously detected rare variants in GABRG2, which encodes the γ2 subunit of γ-aminobutyric acid type A receptor (GABAAR), in patients with SHE and demonstrated that these variants impaired GABAAR function in vitro. However, the mechanisms by which GABRG2 variants contribute to seizure attacks during sleep remain unclear. METHODS: In this study, we designed a knock-in (KI) mouse expressing the mouse Gabrg2 T316N variant, corresponding to human GABRG2 T317N variant, using CRISPR/Cas9. Continuous video-electroencephalogram monitoring and in vivo multichannel electrophysiological recordings were performed to explore seizure susceptibility to pentylenetetrazol (PTZ), alterations in the sleep-wake cycle, spontaneous seizure patterns, and synchronized activity in the motor thalamic nuclei (MoTN) and secondary motor cortex (M2). Circadian variations in the expression of total, membrane-bound, and synaptic GABAAR subunits were also investigated. RESULTS: No obvious changes in gross morphology were detected in Gabrg2T316N/+ mice compared to their wild-type (Gabrg2+/+) littermates. Gabrg2T316N/+ mice share key phenotypes with patients, including sleep fragmentation and spontaneous seizures during sleep. Gabrg2T316N/+ mice showed increased susceptibility to PTZ-induced seizures and higher mortality after seizures. Synchronization of the local field potentials between the MoTN and M2 was abnormally enhanced in Gabrg2T316N/+ mice during light phase, when sleep dominates, accompanied by increased local activities in the MoTN and M2. Interestingly, in Gabrg2+/+ mice, GABAAR γ2 subunits showed a circadian increase on the neuronal membrane and synaptosomes in the transition from dark phase to light phase, which was absent in Gabrg2T316N/+ mice. CONCLUSION: We generated a new SHE mouse model and provided in vivo evidence that rare variants of GABRG2 contribute to seizure attacks during sleep in SHE.

8.
World J Clin Cases ; 12(8): 1497-1503, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38576820

RESUMO

BACKGROUND: Patients rarely develop complicated infections in thyroid cysts. Here, we describe a patient with chronic infected unilateral giant thyroid cyst related to diabetes mellitus (DM). CASE SUMMARY: A 66-year-old male was admitted due to an evident neck lump for 5 d after approximately 40 years of gradually progressive neck mass and 7 years of DM. Doppler ultrasound and computed tomography scan showed a giant lump in the left thyroid gland lobe. He was diagnosed with a large thyroid nodule complicated by tracheal dislocation and had surgical indications. Surgical exploration revealed evident inflammatory edema and exudation between the left anterior neck muscles, the nodule and glandular tissue. Fortunately, inflammatory lesions did not affect major neck vessels. Finally, a left partial thyroidectomy was performed. Macroscopic observation showed that the cystic thyroid mass consisted of extensive cystic wall calcification and was rich in massive rough sand-like calculi content and purulent matter. Postoperative pathology confirmed benign thyroid cyst with chronic infection. CONCLUSION: The progression of this chronic infectious unilateral giant thyroid cyst may have been related to DM, and identifying blood vessels involvement can prevent serious complications during operation.

9.
Phytomedicine ; 128: 155412, 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38579666

RESUMO

BACKGROUND: Psoriasis is a long-lasting, inflammatory, continuous illness caused through T cells and characterized mainly by abnormal growth and division of keratinocytes. Currently, corticosteroids are the preferred option. However, prolonged use of traditional topical medication can lead to adverse reactions and relapse, presenting a significant therapeutic obstacle. Improved alternative treatment options are urgently required. Formononetin (FMN) is a representative component of isoflavones in Huangqi (HQ) [Astragalus membranaceus (Fisch.) Bge.]. It possesses properties that reduce inflammation, combat oxidation, inhibit tumor growth, and mimic estrogen. Although FMN has been shown to ameliorate skin barrier devastation via regulating keratinocyte apoptosis and proliferation, there are no reports of its effectiveness in treating psoriasis. OBJECTIVE: Through transcriptomics clues and experimental investigation, we aimed to elucidate the fundamental mechanisms underlying FMN's action on psoriasis. MATERIALS AND METHODS: Cell viability was examined using CCK8 assay in this study. The results of analysis of differentially expressed genes (DEGs) between FMN-treated HaCaT cells and normal HaCaT cells using RNA-sequencing (RNA-seq) were presented on volcano plots and heatmap. Enrichment analysis was conducted on DEGs using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), and results were validated through RT-qPCR verification. After 12 days of FMN treatment in psoriasis mouse model, we gauged the PASI score and epidermis thickness. A variety of techniques were used to assess FMN's effectiveness on inhibiting inflammation and proliferation related to psoriasis, including RT-qPCR, HE staining, western blot, and immunohistochemistry (IHC). RESULTS: The findings indicated that FMN could suppress the growth of HaCaT cells using CCK8 assay (with IC50 = 40.64 uM) and 20 uM FMN could reduce the level of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) to the greatest extent. FMN-treated HaCaT cells exhibited 985 up-regulated and 855 down-regulated DEGs compared to normal HaCaT cells. GO analysis revealed that DEGs were linked to interferon (IFN) signaling pathway. Furthermore, FMN improved pathological features, which encompassed decreased erythema, scale, and thickness scores of skin lesions in psoriasis mouse model. In vivo experiments confirmed that FMN down-regulated expression of IFN-α, IFN-ß, IFN-γ, decreased secretion of TNF-α and IL-17 inflammatory factors, inhibited expression of IFN-related chemokines included Cxcl9, Cxcl10, Cxcl11 and Cxcr3 and reduced expression of transcription factors p-STAT1, p-STAT3 and IFN regulatory factor 1 (IRF1) in the imiquimod (IMQ) group. CONCLUSIONS: In summary, these results suggested that FMN played an anti-inflammatory and anti-proliferative role in alleviating psoriasis by inhibiting IFN signaling pathway, and FMN could be used as a potential therapeutic agent.

10.
Discov Oncol ; 15(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573548

RESUMO

BACKGROUND: Abnormal expression of protein tyrosine kinase 6 (PTK6) has been proven to be involved in the development of gynecological tumors. However, its immune-related carcinogenic mechanism in other tumors remains unclear. OBJECTIVE: The aim of this study was to identify PTK6 as a novel prognostic biomarker in pan-cancer, especially in lung adenocarcinoma (LUAD), which is correlated with immune infiltration, and to clarify its clinicopathological and prognostic significance. METHODS: The prognostic value and immune relevance of PTK6 were investigated by using bio-informatics in this study. PTK6 expression was validated in vitro experiments (lung cancer cell lines PC9, NCI-H1975, and HCC827; human normal lung epithelial cells BEAS-2B). Western blot (WB) revealed the PTK6 protein expression in lung cancer cell lines. PTK6 expression was inhibited by Tilfrinib. Colony formation and the Cell Counting Kit-8 (CCK-8) assay were used to detect cell proliferation. The wound healing and trans-well were performed to analyze the cell migration capacity. Then flow cytometry was conducted to evaluate the cell apoptosis. Eventually, the relationship between PTK6 and immune checkpoints was examined. WB was used to estimate the PD-L1 expression at different Tilfrinib doses. RESULTS: PTK6 was an independent predictive factor for LUAD and was substantially expressed in LUAD. Pathological stage was significantly correlated with increased PTK6 expression. In accordance with survival analysis, poor survival rate in LUAD was associated with a high expression level of PTK6. Functional enrichment of the cell cycle and TGF-ß signaling pathway was demonstrated by KEGG and GSEA analysis. Moreover, PTK6 expression considerably associated with immune infiltration in LUAD, as determined by immune analysis. Thus, the result of vitro experiments indicated that cell proliferation and migration were inhibited by the elimination of PTK6. Additionally, PTK6 suppression induced cell apoptosis. Obviously, PD-L1 protein expression level up-regulated while PTK6 was suppressed. CONCLUSION: PTK6 has predictive value for LUAD prognosis, and could up regulated PD-L1.

11.
Diagn Pathol ; 19(1): 60, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627702

RESUMO

AIMS: MNDA (myeloid nuclear differentiation antigen) has been considered as a potential diagnostic marker for marginal zone lymphoma (MZL), but its utility in distinguishing MZL from other B-cell non-Hodgkin lymphomas (B-NHLs) and its clinicopathologic relevance in diffuse large B-cell lymphoma (DLBCL) are ambiguous. We comprehensively investigated MNDA expression in a large series of B-NHLs and evaluated its diagnostic value. METHODS: MNDA expression in a cohort of 1293 cases of B-NHLs and 338  cases of reactive lymphoid hyperplasia (RLH) was determined using immunohistochemistry and compared among different types of B-NHL. The clinicopathologic relevance of MNDA in DLBCL was investigated. RESULTS: MNDA was highly expressed in MZLs (437/663, 65.9%), compared with the confined staining in marginal zone B-cells in RLH; whereas neoplastic cells with plasmacytic differentiation lost MNDA expression. MNDA expression was significantly higher in mantle cell lymphoma (MCL, 79.6%, p = 0.006), whereas lower in chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL, 44.8%, p = 0.001) and lymphoplasmacytic lymphoma (LPL, 25%, p = 0.016), and dramatically lower in follicular lymphoma (FL, 5.2%, p < 0.001), compared with MZL. 29.6% (63/213) of DLBCLs were positive for MNDA. The cases in non-GCB group exhibited a higher rate of MNDA positivity (39.8%) compared to those in GCB group (16.3%) (p < 0.001), and MNDA staining was more frequently observed in DLBCLs with BCL2/MYC double-expression (50%) than those without BCL2/MYC double-expression (24.8%) (p = 0.001). Furthermore, there was a significant correlation between MNDA and CD5 expression in DLBCL (p = 0.036). CONCLUSIONS: MNDA was highly expressed in MZL with a potential utility in differential diagnosis between MZL and RLH as well as FL, whereas its value in distinguishing MZL from MCL, CLL/SLL is limited. In addition, MNDA expression in DLBCL was more frequently seen in the non-GCB group and the BCL2/MYC double-expression group, and demonstrated a correlation with CD5, which deserves further investigation. The clinical relevance of MNDA and its correlation with the prognosis of these lymphomas also warrant to be fully elucidated.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma de Zona Marginal Tipo Células B , Linfoma Folicular , Humanos , Antígenos de Diferenciação Mielomonocítica/metabolismo , Diagnóstico Diferencial , Leucemia Linfocítica Crônica de Células B/diagnóstico , Linfoma de Zona Marginal Tipo Células B/metabolismo , Linfoma Folicular/patologia , Proteínas Proto-Oncogênicas c-bcl-2 , Fatores de Transcrição/metabolismo
12.
J Hazard Mater ; 470: 134204, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579586

RESUMO

Selenium (Se) plays a critical role in diverse biological processes and is widely used across manufacturing industries. However, the contamination of Se oxyanions also poses a major public health concern. Microbial transformation is a promising approach to detoxify Se oxyanions and produce elemental selenium nanoparticles (SeNPs) with versatile industrial potential. Yeast-like fungi are an important group of environmental microorganisms, but their mechanisms for Se oxyanions reduction remain unknown. In this study, we found that Aureobasidium melanogenum I15 can reduce 1.0 mM selenite by over 90% within 48 h and efficiently form intracellular or extracellular spherical SeNPs. Metabolomic and proteomic analyses disclosed that A. melanogenum I15 evolves a complicated selenite reduction mechanism involving multiple metabolic pathways, including the glutathione/glutathione reductase pathway, the thioredoxin/thioredoxin reductase pathway, the siderophore-mediated pathway, and multiple oxidoreductase-mediated pathways. This study provides the first report on the mechanism of selenite reduction and SeNPs biogenesis in yeast-like fungi and paves an alternative avenue for the bioremediation of selenite contamination and the production of functional organic selenium compounds.


Assuntos
Ascomicetos , Ácido Selenioso , Selênio , Ácido Selenioso/metabolismo , Selênio/metabolismo , Ascomicetos/metabolismo , Oxirredução , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas Metálicas/química , Biodegradação Ambiental , Proteínas Fúngicas/metabolismo , Proteômica
13.
Biol Trace Elem Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619679

RESUMO

In this study, the aim was to investigate the correlation between varying levels of urinary iodine concentration (UIC) in adults and the occurrence of thyroid diseases, with the additional objective of determining the optimal iodine status level for adults. A cross-sectional study was conducted on adults from six areas with different drinking water iodine concentrations (WIC) without eating iodized salt in Heze and Jining counties, Shandong Province, China. A total of 1336 adults were included in this study, and drinking water samples, blood samples, urine samples, thyroid ultrasound, and a questionnaire were collected. UIC, free triiodothyronine (FT3), free thyroid hormone (FT4), thyroid-stimulating hormone (TSH), thyroid peroxidase antibody (TPOAb) and thyroglobulin antibody (TgAb) were detected. There were no significant differences in the detection rates of hypothyroidism and thyroid autoimmunity (TAI) among the different median UIC groups (UIC < 100 µg/L, 100-199 µg/L, 200-299 µg/L, ≥ 300 µg/L). However, the detection rates of hypothyroidism were higher in the UIC < 100 µg/L group (16.67%) and the UIC ≥ 300 µg/L group (16.51%) compared to the other groups. The detection rate of TAI increased as UIC levels increased. The detection rate of thyroid nodule (TN) in the UIC < 100 µg/L group was significantly higher than that in the UIC 200-299 µg/L UIC group (χ2 = 10.814, P = 0.001). After adjusting confounding factors, it was found that low UIC (< 100 µg/L) was a risk factor for TN (OR 1.83, 95% CI [1.04-3.22]). Meanwhile, there no statistical difference between UIC 200 and 299 µg/L and UIC 100 and199 µg/L for OR of hypothyroidism, TAI, and TN. This study identified associations between different UIC levels and the prevalence of thyroid disorders, with low UIC (< 100 µg/L) posing a risk for TN, and the detection rate of TN and hypothyroidism was the lowest in UIC (200-299 µg/L) group. Therefore, the acceptable UIC range of 'adequate' iodine intake among adults can be widened from 100-199 µg/L to 100-299 µg/L.

14.
Brain Res ; 1835: 148919, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38588846

RESUMO

BACKGROUND: As a key substance for intercellular communication, exosomes could be a potential strategy for stroke treatment. Activated microglia disrupt the integrity of blood-brain barrier (BBB) to facilitate the stroke process. Hence, this study was designed to investigate the effect of microglia-derived exosomes on BBB cell model injury and to explore the underlying molecular mechanisms. METHODS: M1 polarization of BV2 cells was induced with LPS and their derived exosomes were isolated. Astrocytes were cultured in primary culture and constructed with End3 cells as a BBB cell model. After co-culture with exosomes, the BBB cell model was examined for changes in TEER, permeability, and expression of BBB-related proteins (Claudin-1, Occludin, ZO-1 and JAM). Resting and M1-type BV2 cell-derived exosomes perform small RNA sequences and differentially expressed miRNAs (DE-miRNAs) are identified by bioinformatics. RESULTS: M1-type BV2 cell-derived exosomes decreased End3 cell viability, and increased their apoptotic ratio. Moreover, M1 type BV2 cell-derived exosomes dramatically enhanced the permeability of BBB cell model, and diminished the TEER and BBB-related protein (Claudin-1, Occludin, ZO-1) expression. Notably, resting BV2 cell-derived exosomes had no effect on the integrity of BBB cell model. Sequencing results indicated that 71 DE-miRNAs were present in M1 BV2 cell-derived exosomes, and their targets mediated neurological development and signaling pathways such as MAPK and cAMP. RT-qPCR confirmed the differential expression of mmu-miR-125a-5p, mmu-miR-122b-3p, mmu-miR-139-3p, mmu-miR-330-3p, mmu-miR-3057-5p and mmu-miR-342-3p consistent with the small RNA sequence. Furthermore, Creb1, Jun, Mtor, Frk, Pabpc1 and Sdc1 are the most well-connected proteins in the PPI network. CONCLUSION: M1-type microglia-derived exosomes contribute to the injury of BBB cell model, which has the involvement of miRNAs. Our findings provide new perspectives and potential mechanisms for future M1 microglia-derived exosomes as therapeutic targets in stroke.

15.
Nat Biomed Eng ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641710

RESUMO

Intracellular DNA sensors regulate innate immunity and can provide a bridge to adaptive immunogenicity. However, the activation of the sensors in antigen-presenting cells (APCs) by natural agonists such as double-stranded DNAs or cyclic nucleotides is impeded by poor intracellular delivery, serum stability, enzymatic degradation and rapid systemic clearance. Here we show that the hydrophobicity, electrostatic charge and secondary conformation of helical polypeptides can be optimized to stimulate innate immune pathways via endoplasmic reticulum stress in APCs. One of the three polypeptides that we engineered activated two major intracellular DNA-sensing pathways (cGAS-STING (for cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes) and Toll-like receptor 9) preferentially in APCs by promoting the release of mitochondrial DNA, which led to the efficient priming of effector T cells. In syngeneic mouse models of locally advanced and metastatic breast cancers, the polypeptides led to potent DNA-sensor-mediated antitumour responses when intravenously given as monotherapy or with immune checkpoint inhibitors. The activation of multiple innate immune pathways via engineered cationic polypeptides may offer therapeutic advantages in the generation of antitumour immune responses.

16.
Brain Circ ; 10(1): 67-76, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655441

RESUMO

PURPOSE: Through three neurocritical care unit (NCCU) surveys in China, we tried to understand the development status of neurocritical care and clarify its future development. METHODS: Using a cross-sectional survey method and self-report questionnaires, the number and quality of NCCUs were investigated through three steps: administering the questionnaire, sorting the survey data, and analyzing the survey data. RESULTS: At the second and third surveys, the number of NCCUs (76/112/206) increased by 47% and 84%, respectively. The NCCUs were located in tertiary grade A hospitals or teaching hospitals (65/100/181) in most provinces (24/28/29). The numbers of full-time doctors (359/668/1337) and full-time nurses (904/1623/207) in the NCCUs increased, but the doctor-bed ratio and nurse-bed ratio were still insufficient (0.4:1 and 1.3:1). CONCLUSION: In the past 20 years, the growth rate of NCCUs in China has accelerated, while the allocation of medical staff has been insufficient. Although most NCCU hospital bed facilities and instruments and equipment tend to be adequate, there are obvious defects in some aspects of NCCUs.

17.
J Bone Miner Res ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652170

RESUMO

The role of monocytes in postmenopausal osteoporosis is widely recognized; however, the mechanisms underlying monocyte reprogramming remain unknown. In this study, single-cell RNA sequencing (scRNA-seq) was conducted on CD14+ bone marrow monocytes obtained from three postmenopausal women with normal bone mineral density (BMD) and three women with postmenopausal osteoporosis (PMOP). Monocle2 was used to classify the monocytes into 7 distinct clusters. The proportion of Cluster 1 significantly decreased in PMOP patients, while the proportion of Cluster 7 increased. Further analysis via GSEA, transcription factor activity analysis, and sc-metabolic analysis revealed significant differences between Clusters 1 and 7. Cluster 7 exhibited upregulated pathways associated with inflammation, immunity, and osteoclast differentiation, whereas Cluster 1 demonstrated the opposite results. Monocle2, TSCAN, VECTOR and scVelo data indicated that Cluster 1 represented the initial subset and that Cluster 7 represents one of the terminal subsets. BayesPrism and ssGSEA were employed to analyze the bulk transcriptome data obtained from the GEO database. The observed alterations in the proportions of Clusters 1 and 7 were validated and found to have diagnostic significance. CD16 serves as the marker gene for Cluster 7, thus leading to an increased proportion of CD16+ monocytes in women with PMOP. Flow cytometry was used to assess the consistency of outcomes with those of the bioinformatic analysis. Subsequently, an additional scRNA-seq analysis was conducted on bone marrow mononuclear cells obtained from three patients with PMOP and three postmenopausal women with normal BMD. The differential proportions of Cluster 1 and Cluster 7 were once again confirmed, with the pathological effect of Cluster 7 may attribute to cell-cell communication. The scRNA-seq findings suggest that an imbalance in monocyte subsets is a characteristic feature of PMOP. These findings elucidate the limitations of utilizing bulk transcriptome data for detecting alterations in monocytes, which may influence novel research inquiries.


Monocytes are a type of white blood cell that plays a role in postmenopausal osteoporosis (PMOP), a condition where bones become weak and brittle after menopause. However, how monocytes change in this condition is not fully understood. In this study, single-cell RNA sequencing was used to analyze bone marrow monocytes from postmenopausal women with normal bone density and those with osteoporosis. Two distinct types of monocytes were identified, which were called Clusters 1 and 7. In women with PMOP, there was a decrease in Cluster 1 monocytes and an increase in Cluster 7 monocytes. This change was validated in external data sets and in peripheral blood. Further analysis showed that Cluster 7 monocytes positively correlated with inflammation, immunity, and osteoclast differentiation (a process that leads to bone resorption). Cluster 1 monocytes were found to be the initial subset, while Cluster 7 monocytes were one of the terminal subsets. Overall, this study suggests that an imbalance in monocyte subsets is a characteristic feature of postmenopausal osteoporosis. These findings have important implications for understanding the role of monocytes in bone health.

18.
Int J Biol Sci ; 20(6): 2044-2071, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617549

RESUMO

Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.


Assuntos
Neoplasias , Humanos , Carcinogênese , Terapia Combinada , Sobrevivência Celular , Transformação Celular Neoplásica , Microambiente Tumoral
19.
World J Psychiatry ; 14(3): 445-455, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38617985

RESUMO

BACKGROUND: Epidemiological studies have revealed a correlation between Alzheimer's disease (AD) and type 2 diabetes mellitus (T2D). Insulin resistance in the brain is a common feature in patients with T2D and AD. KAT7 is a histone acetyltransferase that participates in the modulation of various genes. AIM: To determine the effects of KAT7 on insulin patients with AD. METHODS: APPswe/PS1-dE9 double-transgenic and db/db mice were used to mimic AD and diabetes, respectively. An in vitro model of AD was established by Aß stimulation. Insulin resistance was induced by chronic stimulation with high insulin levels. The expression of microtubule-associated protein 2 (MAP2) was assessed using immunofluorescence. The protein levels of MAP2, Aß, dual-specificity tyrosine phosphorylation-regulated kinase-1A (DYRK1A), IRS-1, p-AKT, total AKT, p-GSK3ß, total GSK3ß, DYRK1A, and KAT7 were measured via western blotting. Accumulation of reactive oxygen species (ROS), malondialdehyde (MDA), and SOD activity was measured to determine cellular oxidative stress. Flow cytometry and CCK-8 assay were performed to evaluate neuronal cell death and proliferation, respectively. Relative RNA levels of KAT7 and DYRK1A were examined using quantitative PCR. A chromatin immunoprecipitation assay was conducted to detect H3K14ac in DYRK1A. RESULTS: KAT7 expression was suppressed in the AD mice. Overexpression of KAT7 decreased Aß accumulation and MAP2 expression in AD brains. KAT7 overexpression decreased ROS and MDA levels, elevated SOD activity in brain tissues and neurons, and simultaneously suppressed neuronal apoptosis. KAT7 upregulated levels of p-AKT and p-GSK3ß to alleviate insulin resistance, along with elevated expression of DYRK1A. KAT7 depletion suppressed DYRK1A expression and impaired H3K14ac of DYRK1A. HMGN1 overexpression recovered DYRK1A levels and reversed insulin resistance caused by KAT7 depletion. CONCLUSION: We determined that KAT7 overexpression recovered insulin sensitivity in AD by recruiting HMGN1 to enhance DYRK1A acetylation. Our findings suggest that KAT7 is a novel and promising therapeutic target for the resistance in AD.

20.
Nat Commun ; 15(1): 3410, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649684

RESUMO

Estrogen receptor α (ERα) plays a crucial role in regulating glucose and energy homeostasis during type 2 diabetes mellitus (T2DM). However, the underlying mechanisms remain incompletely understood. Here we find a ligand-independent effect of ERα on the regulation of glucose homeostasis. Deficiency of ERα in the liver impairs glucose homeostasis in male, female, and ovariectomized (OVX) female mice. Mechanistic studies reveal that ERα promotes hepatic insulin sensitivity by suppressing ubiquitination-induced IRS1 degradation. The ERα 1-280 domain mediates the ligand-independent effect of ERα on insulin sensitivity. Furthermore, we identify a peptide based on ERα 1-280 domain and find that ERα-derived peptide increases IRS1 stability and enhances insulin sensitivity. Importantly, administration of ERα-derived peptide into obese mice significantly improves glucose homeostasis and serum lipid profiles. These findings pave the way for the therapeutic intervention of T2DM by targeting the ligand-independent effect of ERα and indicate that ERα-derived peptide is a potential insulin sensitizer for the treatment of T2DM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...